Darvaish Khan | Material Science | Research Excellence Award

Dr. Darvaish Khan | Material Science | Research Excellence Award

Dr. Darvaish Khan | Sapienza University of Rome | Italy

Dr. Darvaish Khan is a distinguished postdoctoral researcher at the Department of Chemical Engineering, Materials, and Environment, Sapienza University of Rome, Italy, with an extensive academic and research background in materials science, solid-state physics, and energy materials. He earned his Ph.D. in Materials Science and Engineering from Shanghai Jiao Tong University, China, following a Master’s from Liverpool Hope University, UK, and an M.Sc. in Solid State Physics from the University of Peshawar, Pakistan. Dr. Khan’s research primarily focuses on the design, synthesis, and characterization of metal hydrides, composites, and alloys for advanced hydrogen storage and energy applications. His expertise spans hydrogen-matter interactions, phase transitions in nanostructured environments, and modeling of solid-state metal hydrides using COMSOL Multiphysics. He has developed innovative materials through solid-state mechanochemical, hydrothermal, and wet-impregnation/infiltration methods, utilizing advanced characterization tools such as XRD, SEM, TEM, BET, DSC, TGA, FTIR, XPS, Raman spectroscopy, and Sieverts-type PCT for analyzing structural, thermal, and gas sorption properties. His work significantly contributes to improving the thermodynamics and kinetics of hydrogen sorption in metal hydrides and nanocomposites, addressing global challenges in sustainable hydrogen energy systems. Dr. Khan’s impactful research has been published in top-tier international journals, including Interdisciplinary Materials, Journal of Alloys and Compounds, ACS Applied Materials & Interfaces, Chemical Engineering Journal, and the International Journal of Hydrogen Energy. He has also served as a guest speaker at international conferences, received multiple research excellence awards, and is a reviewer for international scientific journals. As an HEC-approved Ph.D. supervisor and member of the American Chemical Society and International Society of Hydrogen Energy, Dr. Khan continues to advance interdisciplinary innovations in hydrogen storage, nanostructured materials, and sustainable energy technologies, contributing meaningfully to the global transition toward a hydrogen-based clean energy future.

Profiles: Google Scholar

Featured Publications 

Zhu, W., Panda, S., Lu, C., Ma, Z., Khan, D., Dong, J., Sun, F., Xu, H., Zhang, Q., & Zou, J. (2020). Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti₃C₂) to enhance hydrogen storage properties of MgH₂. ACS Applied Materials & Interfaces, 12(45), 50333–50343.

Ma, Z., Panda, S., Zhang, Q., Sun, F., Khan, D., Ding, W., & Zou, J. (2021). Improving hydrogen sorption performances of MgH₂ through nanoconfinement in a mesoporous CoS nano-boxes scaffold. Chemical Engineering Journal, 406, 126790.

Ma, Z., Zou, J., Khan, D., Zhu, W., Hu, C., Zeng, X., & Ding, W. (2019). Preparation and hydrogen storage properties of MgH₂-trimesic acid-TM MOF (TM = Co, Fe) composites. Journal of Materials Science & Technology, 35(10), 2132–2143.

Khan, D., Zou, J., Zeng, X., & Ding, W. (2018). Hydrogen storage properties of nanocrystalline Mg₂Ni prepared from compressed 2MgH₂–Ni powder. International Journal of Hydrogen Energy, 43(49), 22391–22400.

Ma, Z., Zhang, Q., Panda, S., Zhu, W., Sun, F., Khan, D., Dong, J., Ding, W., & Zou, J. (2020). In situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni-MOF scaffold for hydrogen storage. Sustainable Energy & Fuels, 4(9), 4694–4703.

Muhammad Sarfraz | Material Science | Best Researcher Award

Assoc. Prof. Dr. Muhammad Sarfraz | Material Science | Best Researcher Award

Assoc. Prof. Dr. Muhammad Sarfraz | University of Engeineering and Technology | Pakistan

Dr. Muhammad Sarfraz, PhD, is an accomplished Associate Professor in the Department of Polymer and Process Engineering at the University of Engineering and Technology (UET), Lahore. He brings extensive expertise in membrane technology, polymer processing, and sustainable separation systems, with a strong focus on solutions addressing global challenges such as carbon capture, water purification, and energy-efficient processes. With academic training spanning B.Sc., M.Sc., and Ph.D. in Chemical and Polymer Engineering—including doctoral research at King Fahd University of Petroleum and Minerals (KSA)—Dr. Sarfraz has built a prolific research portfolio. His scholarly impact is reflected in 155 citations across 126 documents, 22 publications, and an h-index of 8. His contributions include high-impact publications, competitive national research grants, and the supervision of multiple postgraduate theses, alongside significant efforts in laboratory establishment and curriculum development at UET. As In-charge of the Membrane Research Lab at UET, he continues to drive innovation in advanced materials and separation technologies. Beyond research, Dr. Sarfraz plays an active role in the global scientific community as a reviewer, editorial board member, and academic council contributor, making him a recognized leader in his field.

Profile: ScopusGoogle ScholarOrcid

Featured Publications

Shahzadi, K., Sarfraz, M., Alomar, M., Al Huwayz, M., Riaz, A., Mujtaba, M. A., Bashir, M. N., & Petrů, J. (2025, November). Zn-Co nanoferrites incorporated polysulfone nanofiltration membranes for wastewater treatment. Polymer Testing, 126, 108993.

Nawaz, S., Sarfraz, M., Alomar, M., Al Huwayz, M., & AlMohamadi, H. (2025, August). Antifouling polyethersulfone-based interfacial polymerization membranes for water treatment applications. Journal of Polymer Research, 32, 4528.

Riaz, A., Wu, C., Li, X., Sarfraz, M., Sun, L., Liu, L., Song, Y., & Ma, X. (2025, June). Huge improved gas separation performance of carbon molecular sieve membranes by incorporating polyimide COF into a linear polyimide precursor. Journal of Membrane Science, 714, 124103.

Sabir, A., Alomar, M., Sarfraz, M., & Yasmeen, F. (2025, June 15). Modulating membrane performance by optimizing coagulation temperature and dipping time. Journal of Applied Polymer Science, 142, e56998.

Khan, H. A. A., Sarfraz, M., Gouadria, S., Al-Harbi, F. F., & Shahzadi, K. (2025, May 15). Enhancing carbon capture efficacy of titania-doped polyethersulfone membranes. Arabian Journal for Science and Engineering, 50, 10263.

Alomar, M., Nawaz, S., Sarfraz, M., & Sabir, A. (2025, March). Genipin nanoparticles-doped reduced graphene oxide membranes: A promising solution for arsenic ion removal from wastewater. Arabian Journal for Science and Engineering, 50, 9634.

Sarfraz, M., Alomar, M., Ma, X., & Riaz, A. (2024). Ameliorating carbon capture efficiency of polysulfone membranes via collegial incorporation of zeolite imidazole frameworks and carbon nanotubes. Journal of Applied Polymer Science, 141, e55707.

Tahir, Z., Alomar, M., Sarfraz, M., Waheed, A., & Ayub, H. M. U. (2024). Carbon capturing composite membranes comprising Cu-MOF and PIM-1. Journal of Applied Polymer Science, 141, e55709.

Sagar, S., Riaz, A., Hasanain, B., Bahadar, A., & Sarfraz, M. (2024). Deportment tuning of polymeric gas separation membranes: ZIF-L/PES nanocomposite. Arabian Journal for Science and Engineering, 49, 8522.

Sarfraz, M., Ayyaz, M., Rauf, A., Yaqoob, A., Ali, M. A., Siddique, S. A., Qureshi, A. M., Sarfraz, M. H., Aljowaie, R. M., & Almutairi, S. M. (2024). New pyrimidinone bearing aminomethylenes and Schiff bases as potent antioxidant, antibacterial, SARS-CoV-2, and COVID-19 main protease Mpro inhibitors: Design, synthesis, bioactivities, and computational studies. ACS Omega, 9(1), 9393–

Khalid, J., Tariq, Z., Sarfraz, M., Mahmoud, K. H., & Abid, N. (2024). Pilot scale trialing of multi-leaf spiral-wound polymer membrane modules for efficient carbon capture. Arabian Journal for Science and Engineering, 49, 8809.