Muhammad Sarfraz | Material Science | Best Researcher Award

Assoc. Prof. Dr. Muhammad Sarfraz | Material Science | Best Researcher Award

Assoc. Prof. Dr. Muhammad Sarfraz | University of Engeineering and Technology | Pakistan

Dr. Muhammad Sarfraz, PhD, is an accomplished Associate Professor in the Department of Polymer and Process Engineering at the University of Engineering and Technology (UET), Lahore. He brings extensive expertise in membrane technology, polymer processing, and sustainable separation systems, with a strong focus on solutions addressing global challenges such as carbon capture, water purification, and energy-efficient processes. With academic training spanning B.Sc., M.Sc., and Ph.D. in Chemical and Polymer Engineering—including doctoral research at King Fahd University of Petroleum and Minerals (KSA)—Dr. Sarfraz has built a prolific research portfolio. His scholarly impact is reflected in 155 citations across 126 documents, 22 publications, and an h-index of 8. His contributions include high-impact publications, competitive national research grants, and the supervision of multiple postgraduate theses, alongside significant efforts in laboratory establishment and curriculum development at UET. As In-charge of the Membrane Research Lab at UET, he continues to drive innovation in advanced materials and separation technologies. Beyond research, Dr. Sarfraz plays an active role in the global scientific community as a reviewer, editorial board member, and academic council contributor, making him a recognized leader in his field.

Profile: ScopusGoogle ScholarOrcid

Featured Publications

Shahzadi, K., Sarfraz, M., Alomar, M., Al Huwayz, M., Riaz, A., Mujtaba, M. A., Bashir, M. N., & Petrů, J. (2025, November). Zn-Co nanoferrites incorporated polysulfone nanofiltration membranes for wastewater treatment. Polymer Testing, 126, 108993.

Nawaz, S., Sarfraz, M., Alomar, M., Al Huwayz, M., & AlMohamadi, H. (2025, August). Antifouling polyethersulfone-based interfacial polymerization membranes for water treatment applications. Journal of Polymer Research, 32, 4528.

Riaz, A., Wu, C., Li, X., Sarfraz, M., Sun, L., Liu, L., Song, Y., & Ma, X. (2025, June). Huge improved gas separation performance of carbon molecular sieve membranes by incorporating polyimide COF into a linear polyimide precursor. Journal of Membrane Science, 714, 124103.

Sabir, A., Alomar, M., Sarfraz, M., & Yasmeen, F. (2025, June 15). Modulating membrane performance by optimizing coagulation temperature and dipping time. Journal of Applied Polymer Science, 142, e56998.

Khan, H. A. A., Sarfraz, M., Gouadria, S., Al-Harbi, F. F., & Shahzadi, K. (2025, May 15). Enhancing carbon capture efficacy of titania-doped polyethersulfone membranes. Arabian Journal for Science and Engineering, 50, 10263.

Alomar, M., Nawaz, S., Sarfraz, M., & Sabir, A. (2025, March). Genipin nanoparticles-doped reduced graphene oxide membranes: A promising solution for arsenic ion removal from wastewater. Arabian Journal for Science and Engineering, 50, 9634.

Sarfraz, M., Alomar, M., Ma, X., & Riaz, A. (2024). Ameliorating carbon capture efficiency of polysulfone membranes via collegial incorporation of zeolite imidazole frameworks and carbon nanotubes. Journal of Applied Polymer Science, 141, e55707.

Tahir, Z., Alomar, M., Sarfraz, M., Waheed, A., & Ayub, H. M. U. (2024). Carbon capturing composite membranes comprising Cu-MOF and PIM-1. Journal of Applied Polymer Science, 141, e55709.

Sagar, S., Riaz, A., Hasanain, B., Bahadar, A., & Sarfraz, M. (2024). Deportment tuning of polymeric gas separation membranes: ZIF-L/PES nanocomposite. Arabian Journal for Science and Engineering, 49, 8522.

Sarfraz, M., Ayyaz, M., Rauf, A., Yaqoob, A., Ali, M. A., Siddique, S. A., Qureshi, A. M., Sarfraz, M. H., Aljowaie, R. M., & Almutairi, S. M. (2024). New pyrimidinone bearing aminomethylenes and Schiff bases as potent antioxidant, antibacterial, SARS-CoV-2, and COVID-19 main protease Mpro inhibitors: Design, synthesis, bioactivities, and computational studies. ACS Omega, 9(1), 9393–

Khalid, J., Tariq, Z., Sarfraz, M., Mahmoud, K. H., & Abid, N. (2024). Pilot scale trialing of multi-leaf spiral-wound polymer membrane modules for efficient carbon capture. Arabian Journal for Science and Engineering, 49, 8809.

Satyanarayana | Material Science | Best Researcher Award

Dr. G.R. Satyanarayana | Material Science | Best Researcher Award

Sir C R Reddy College | Eluru | India

Dr. G. R. Satyanarayana is an accomplished Professor of Chemistry and Director of the Research Development Cell at Sir C.R. Reddy College (Autonomous), Eluru. With more than two decades of postgraduate teaching and research experience, he has built a strong reputation as a scholar, mentor, and innovator. His academic journey, spanning M.Sc., M.Phil., Ph.D., and MDCA qualifications, reflects his deep commitment to both science and technology. Over the years, he has made significant contributions in physical chemistry, nanomaterials, organic synthesis, molecular interactions, and analytical method development. His pioneering work in drug analysis using HPLC-MS and LCMS/MS has added value to pharmaceutical and bioanalytical research. He has published 9 documents, accumulating 28 citations and achieving an h-index of 2, contributing valuable insights to chemistry and interdisciplinary sciences. Alongside his publications, he has successfully registered or been granted six patents in India and the U.K., covering innovations in nanostructured sensors, catalysts, perovskite solar cells, green synthesis methods, and advanced capacitors. His ability to merge theoretical knowledge with practical applications demonstrates his strength in translational research. Beyond research, Dr. Satyanarayana has actively participated in 37 national and international conferences, seminars, workshops, and faculty development programmes, enriching both his own knowledge and that of the wider academic community. He has successfully completed seven funded minor research projects, showcasing his leadership in project execution and resource management. His role as a mentor has inspired countless students to pursue careers in research, while his collaborative approach has strengthened institutional research culture.

Profile: Scopus Google Scholar Orcid

Featured Publications

“Probing the intermolecular interactions in the binary liquid mixtures of o-chlorophenol with alkoxyethanols through ultrasonic, transport and FT-IR spectroscopic studies”

“Viscometric study of molecular interactions in dimethyl carbonate + n-alkoxyethanol mixtures at different temperatures”

“Theories of ultrasonic velocities and their application in binary liquid mixtures of o-chlorophenol with some aliphatic esters at different temperatures”

“Theoretical Velocities and Viscosities of Binary Mixtures of Diethyl Malonate with Alkoxy Alkanols”

“Steric and electronic effects to interpret non-covalent interactions in binary mixtures of dimethyl carbonate and isomeric cresols through thermophysical, acoustic and …”

“Evaluation and comparative study of theoretical ultrasonic velocities in binary liquid mixtures of o-chloro phenol with alkoxyethanols at different temperatures and atmospheric pressure”

“The study of intermolecular interactions in [Bmim][PF6] + 1-octyl-2-pyrrolidone binary mixtures from volumetric, acoustic, optical and spectroscopic measurements”

“Thermo-Physical Studies on Molecular Interactions in Liquid Binaries of Diethyl Malonate with Isomeric Xylenes at Different Temperatures”

“A Comparative Analysis of Ultra Sound Velocity in Binary Mixtures of Diethyl Malonate with Branched Alkanols by Theoretical and Experimental Methods”

Huilong Wan | Material Science | Best Scholar Award

Dr. Huilong Wan | Material Science | Best Scholar Award

Dr. Huilong Wan, Wuhan university, China

Dr. Huilong Wan, a Ph.D. candidate at Wuhan University, has made significant contributions to the field of electrical engineering through research in electromagnetic launch and pulsed power technologies. With nearly a decade of industry experience and multiple national project awards, he has demonstrated strong academic excellence, publishing in leading journals such as IEEE Transactions on Dielectrics and Electrical Insulation and Polymer. His innovative patent on electromagnetic stress devices and work on material aging under extreme conditions reflect both scientific depth and industrial relevance, making him a strong contender for the Best Research Scholar Award.

Author Profile

Scopus

🎓 Early Academic Pursuits

Dr. Huilong Wan’s academic journey began with a strong foundation in electrical engineering, nurtured by a passion for innovation and high-impact research. Currently a Ph.D. candidate at Wuhan University, one of China’s premier institutions, Dr. Wan has consistently demonstrated a deep intellectual curiosity and a commitment to solving real-world engineering challenges. His graduate studies focus on high-voltage engineering and material behavior under extreme operational conditions — areas vital for advancing modern power systems and reliability in electrical infrastructure. His academic path has been marked by both rigor and relevance, shaped by a desire to bridge the gap between theoretical research and practical engineering applications. This dual focus has guided his evolution from a student to a dynamic emerging scholar in the energy and materials domain.

🏗️ Professional Endeavors

Before embarking on his doctoral journey, Dr. Wan accumulated nearly ten years of professional experience at the Jiangxi Electric Power Design Institute, where he served as a key technical contributor to major infrastructure projects. His industry experience enriched his understanding of China’s power grid development and laid the groundwork for his subsequent research into power system durability and high-performance materials. He played a critical role in the design and implementation of large-scale transmission lines and renewable energy infrastructure. These include award-winning projects such as the Pingjiang Pumped Storage – Mengshan 500kV Transmission Line, and the Jiujiangshan Wind Farm, reflecting both the scale and complexity of the projects he engaged with. This unique blend of academic and field experience provides Dr. Wan with a rare ability to approach engineering problems with a holistic and application-oriented mindset.

🧪 Contributions and Research Focus

Dr. Wan’s primary research interests center around electromagnetic launch technology, pulsed power systems, and the aging and life assessment of insulation materials like glass fiber-epoxy composites under extreme electrical, thermal, and mechanical stress.

He has authored and co-authored peer-reviewed articles in reputable journals such as:

  • IEEE Transactions on Dielectrics and Electrical Insulation

  • High Voltage Engineering

  • Polymer

  • IEEE Sensors Journal

  • International Communications in Heat and Mass Transfer

These publications reflect his commitment to pushing the frontiers of knowledge in high-voltage insulation and energy system reliability. He has also filed a patent titled “An Equivalent Adjustable Electromagnetic Stress Continuous Impact Device”, showcasing his innovative approach to testing material durability.

🏅 Accolades and Recognition

Dr. Wan’s work has received consistent recognition at both national and institutional levels. His professional achievements include:

  • 2nd Prize (Excellent Design) – Pingjiang Pumped Storage 500kV Line

  • 2nd Prize – Jiangxi Yintan-Fuzhou-Luofang II 500kV Line

  • 2nd Prize (Power Industry Excellent Design) – Jiujiangshan Wind Farm

  • 3rd Prize – Fuzhou-Linchuan 220kV Line

These accolades underline his technical excellence and ability to contribute meaningfully to large-scale, high-impact engineering projects.

Additionally, one of his research publications appeared in SCI-JCI Q1 journals (2025 IF: 4.5), reinforcing his position as a rising researcher with international visibility.

🌍 Impact and Influence

Dr. Wan’s work directly contributes to enhancing the efficiency, safety, and longevity of electrical systems in an era where renewable integration and smart grids are reshaping the energy landscape. His innovations in pulsed power systems and insulation material assessment offer tools for utilities and designers to mitigate risks and extend the life of critical infrastructure. Furthermore, through his combined roles in academia and industry, Dr. Wan serves as a bridge between theory and practice, influencing the next generation of power system research and design. His involvement in national-level projects funded by the National Natural Science Foundation of China illustrates his growing influence in China’s scientific and technological advancement.

🌟 Legacy and Future Contributions

Looking forward, Dr. Wan aspires to expand his research into multifunctional composite materials, AI-assisted diagnostics for insulation aging, and advanced testing devices for extreme condition simulation. His goal is not only to contribute new knowledge but also to build scalable solutions that can be implemented in both urban and rural energy systems across the globe. He envisions a future where high-voltage systems are more resilient, self-monitoring, and environmentally adaptive — a vision he is well-positioned to realize, given his expertise and drive. As a committed scholar and engineer, Dr. Wan is on track to become a thought leader in high-voltage power systems and material reliability, leaving a lasting legacy in academia, industry, and national energy policy. Dr. Wan’s work has received consistent recognition at both national and institutional levels. His professional achievements include:

  • 2nd Prize (Excellent Design) – Pingjiang Pumped Storage 500kV Line

  • 2nd Prize – Jiangxi Yintan-Fuzhou-Luofang II 500kV Line

  • 2nd Prize (Power Industry Excellent Design) – Jiujiangshan Wind Farm

  • 3rd Prize – Fuzhou-Linchuan 220kV Line

These accolades underline his technical excellence and ability to contribute meaningfully to large-scale, high-impact engineering projects. Additionally, one of his research publications appeared in SCI-JCI Q1 journals (2025 IF: 4.5), reinforcing his position as a rising researcher with international visibility.

🌍 Impact and Influence

Dr. Wan’s work directly contributes to enhancing the efficiency, safety, and longevity of electrical systems in an era where renewable integration and smart grids are reshaping the energy landscape. His innovations in pulsed power systems and insulation material assessment offer tools for utilities and designers to mitigate risks and extend the life of critical infrastructure. Furthermore, through his combined roles in academia and industry, Dr. Wan serves as a bridge between theory and practice, influencing the next generation of power system research and design. His involvement in national-level projects funded by the National Natural Science Foundation of China illustrates his growing influence in China’s scientific and technological advancement.

🌟 Legacy and Future Contributions

Looking forward, Dr. Wan aspires to expand his research into multifunctional composite materials, AI-assisted diagnostics for insulation aging, and advanced testing devices for extreme condition simulation. His goal is not only to contribute new knowledge but also to build scalable solutions that can be implemented in both urban and rural energy systems across the globe. He envisions a future where high-voltage systems are more resilient, self-monitoring, and environmentally adaptive — a vision he is well-positioned to realize, given his expertise and drive. As a committed scholar and engineer, Dr. Wan is on track to become a thought leader in high-voltage power systems and material reliability, leaving a lasting legacy in academia, industry, and national energy policy.

✍️Notable Publications

Design of Parallel Impact Mechanism Based on Electromagnetic Kinetic Energy

Author:  Huiling Wang, Dongsheng Qian, Feng Wang, Jiancheng Chen

Journal: Gaodianya Jishu High Voltage Engineering.

Year: 2025