Surendiran Mohan | Material Science | Excellence in Research

Dr. Surendiran Mohan | Material Science | Excellence in Research

Dr. Surendiran Mohan | Vinayaka Mission’s Research Foundation | India

Dr. M. Surendiran is a distinguished academic and researcher specializing in nanobiomaterials, analytical chemistry, materials science, corrosion science, and sustainable materials. His research primarily focuses on the development of bio-ceramic and polymer coatings for biomedical and anticorrosive applications, as well as multifunctional inhibitor systems and advanced composite materials for environmental and industrial use. With nearly a decade of professional experience, he has published 23 research papers that have garnered 456 citations across 436 documents, reflecting his growing influence in the scientific community. His h-index of 9 demonstrates the strong impact and consistency of his scholarly work. In addition to publishing high-impact research with a cumulative impact factor of nearly 100, he has contributed book chapters, filed and published patents, and secured several funded research projects. He has received numerous awards for his academic excellence and research leadership and has guided postgraduate and doctoral scholars in cutting-edge materials research. Actively engaged in institutional quality assurance, accreditation, and research development, he also collaborates internationally with leading scientists from Malaysia, Saudi Arabia, South Africa, China, and India, advancing interdisciplinary innovations in sustainable and biomedical materials.

Profiles: ScopusGoogle Scholar

Featured Publications

Surendiran, M., Indira, K. M. A., & Al-Humaid, L. A. (2025). Understanding the effective breakdown of PAHs in water through the use of g–C₃N₄–Ag–Cu–Ni nanocomposites. Chemosphere.

Surendiran, M., Srinivasan, S. G., Manickam, A., Sivakumar, S., & Jeevadharani, P. (2025). A comprehensive review: Surface modification strategies to enhance corrosion resistance of zirconia-based biomaterials in implant applications. Journal of Materials Science: Materials in Engineering, 20(76).

Surendiran, M., Kartik, R., & Muthusamy, S. (2025). Chemical modifications of chitin and chitosan fibers and filaments: A review. Macromolecular Chemistry and Physics, 2400422, 1–16.

Surendiran, M., Gopi Srinivasan, P. A., & Mohan, S. (2025). Versatile application of calixarenes and their derivatives: From drug delivery to industrial catalysis and environmental remediation. Critical Reviews in Analytical Chemistry.

Surendiran, M., Indira, K., Chozhanathmisra, M., & Aloufi, A. S. (2025). Electrochemical and corrosion protection performance of Sr-HaP/PoPD coated LN stainless steel. Journal of the Taiwan Institute of Chemical Engineers, 166, 105447.

Xiping Chen | Material Science | Best Researcher Award

Prof. Dr. Xiping Chen | Material Science | Best Researcher Award

Prof. Dr. Xiping Chen |  Zhengzhou University | China

Dr. Chen Xiping, Professor and Doctoral Supervisor at Zhengzhou University, is a distinguished expert in molten salt chemistry and the comprehensive utilization of nonferrous metal resources. She has made pioneering contributions to green metallurgy, environmental protection, and the sustainable recycling of industrial byproducts. With extensive leadership experience in academia, industry, and national committees, she plays a vital role in advancing innovative technologies and setting industry standards that promote cleaner, more efficient metallurgical practices.

Academic Profile 

scopus

Huilong Wan | Material Science | Best Scholar Award

Dr. Huilong Wan | Material Science | Best Scholar Award

Dr. Huilong Wan, Wuhan university, China

Dr. Huilong Wan, a Ph.D. candidate at Wuhan University, has made significant contributions to the field of electrical engineering through research in electromagnetic launch and pulsed power technologies. With nearly a decade of industry experience and multiple national project awards, he has demonstrated strong academic excellence, publishing in leading journals such as IEEE Transactions on Dielectrics and Electrical Insulation and Polymer. His innovative patent on electromagnetic stress devices and work on material aging under extreme conditions reflect both scientific depth and industrial relevance, making him a strong contender for the Best Research Scholar Award.

Author Profile

Scopus

🎓 Early Academic Pursuits

Dr. Huilong Wan’s academic journey began with a strong foundation in electrical engineering, nurtured by a passion for innovation and high-impact research. Currently a Ph.D. candidate at Wuhan University, one of China’s premier institutions, Dr. Wan has consistently demonstrated a deep intellectual curiosity and a commitment to solving real-world engineering challenges. His graduate studies focus on high-voltage engineering and material behavior under extreme operational conditions — areas vital for advancing modern power systems and reliability in electrical infrastructure. His academic path has been marked by both rigor and relevance, shaped by a desire to bridge the gap between theoretical research and practical engineering applications. This dual focus has guided his evolution from a student to a dynamic emerging scholar in the energy and materials domain.

🏗️ Professional Endeavors

Before embarking on his doctoral journey, Dr. Wan accumulated nearly ten years of professional experience at the Jiangxi Electric Power Design Institute, where he served as a key technical contributor to major infrastructure projects. His industry experience enriched his understanding of China’s power grid development and laid the groundwork for his subsequent research into power system durability and high-performance materials. He played a critical role in the design and implementation of large-scale transmission lines and renewable energy infrastructure. These include award-winning projects such as the Pingjiang Pumped Storage – Mengshan 500kV Transmission Line, and the Jiujiangshan Wind Farm, reflecting both the scale and complexity of the projects he engaged with. This unique blend of academic and field experience provides Dr. Wan with a rare ability to approach engineering problems with a holistic and application-oriented mindset.

🧪 Contributions and Research Focus

Dr. Wan’s primary research interests center around electromagnetic launch technology, pulsed power systems, and the aging and life assessment of insulation materials like glass fiber-epoxy composites under extreme electrical, thermal, and mechanical stress.

He has authored and co-authored peer-reviewed articles in reputable journals such as:

  • IEEE Transactions on Dielectrics and Electrical Insulation

  • High Voltage Engineering

  • Polymer

  • IEEE Sensors Journal

  • International Communications in Heat and Mass Transfer

These publications reflect his commitment to pushing the frontiers of knowledge in high-voltage insulation and energy system reliability. He has also filed a patent titled “An Equivalent Adjustable Electromagnetic Stress Continuous Impact Device”, showcasing his innovative approach to testing material durability.

🏅 Accolades and Recognition

Dr. Wan’s work has received consistent recognition at both national and institutional levels. His professional achievements include:

  • 2nd Prize (Excellent Design) – Pingjiang Pumped Storage 500kV Line

  • 2nd Prize – Jiangxi Yintan-Fuzhou-Luofang II 500kV Line

  • 2nd Prize (Power Industry Excellent Design) – Jiujiangshan Wind Farm

  • 3rd Prize – Fuzhou-Linchuan 220kV Line

These accolades underline his technical excellence and ability to contribute meaningfully to large-scale, high-impact engineering projects.

Additionally, one of his research publications appeared in SCI-JCI Q1 journals (2025 IF: 4.5), reinforcing his position as a rising researcher with international visibility.

🌍 Impact and Influence

Dr. Wan’s work directly contributes to enhancing the efficiency, safety, and longevity of electrical systems in an era where renewable integration and smart grids are reshaping the energy landscape. His innovations in pulsed power systems and insulation material assessment offer tools for utilities and designers to mitigate risks and extend the life of critical infrastructure. Furthermore, through his combined roles in academia and industry, Dr. Wan serves as a bridge between theory and practice, influencing the next generation of power system research and design. His involvement in national-level projects funded by the National Natural Science Foundation of China illustrates his growing influence in China’s scientific and technological advancement.

🌟 Legacy and Future Contributions

Looking forward, Dr. Wan aspires to expand his research into multifunctional composite materials, AI-assisted diagnostics for insulation aging, and advanced testing devices for extreme condition simulation. His goal is not only to contribute new knowledge but also to build scalable solutions that can be implemented in both urban and rural energy systems across the globe. He envisions a future where high-voltage systems are more resilient, self-monitoring, and environmentally adaptive — a vision he is well-positioned to realize, given his expertise and drive. As a committed scholar and engineer, Dr. Wan is on track to become a thought leader in high-voltage power systems and material reliability, leaving a lasting legacy in academia, industry, and national energy policy. Dr. Wan’s work has received consistent recognition at both national and institutional levels. His professional achievements include:

  • 2nd Prize (Excellent Design) – Pingjiang Pumped Storage 500kV Line

  • 2nd Prize – Jiangxi Yintan-Fuzhou-Luofang II 500kV Line

  • 2nd Prize (Power Industry Excellent Design) – Jiujiangshan Wind Farm

  • 3rd Prize – Fuzhou-Linchuan 220kV Line

These accolades underline his technical excellence and ability to contribute meaningfully to large-scale, high-impact engineering projects. Additionally, one of his research publications appeared in SCI-JCI Q1 journals (2025 IF: 4.5), reinforcing his position as a rising researcher with international visibility.

🌍 Impact and Influence

Dr. Wan’s work directly contributes to enhancing the efficiency, safety, and longevity of electrical systems in an era where renewable integration and smart grids are reshaping the energy landscape. His innovations in pulsed power systems and insulation material assessment offer tools for utilities and designers to mitigate risks and extend the life of critical infrastructure. Furthermore, through his combined roles in academia and industry, Dr. Wan serves as a bridge between theory and practice, influencing the next generation of power system research and design. His involvement in national-level projects funded by the National Natural Science Foundation of China illustrates his growing influence in China’s scientific and technological advancement.

🌟 Legacy and Future Contributions

Looking forward, Dr. Wan aspires to expand his research into multifunctional composite materials, AI-assisted diagnostics for insulation aging, and advanced testing devices for extreme condition simulation. His goal is not only to contribute new knowledge but also to build scalable solutions that can be implemented in both urban and rural energy systems across the globe. He envisions a future where high-voltage systems are more resilient, self-monitoring, and environmentally adaptive — a vision he is well-positioned to realize, given his expertise and drive. As a committed scholar and engineer, Dr. Wan is on track to become a thought leader in high-voltage power systems and material reliability, leaving a lasting legacy in academia, industry, and national energy policy.

✍️Notable Publications

Design of Parallel Impact Mechanism Based on Electromagnetic Kinetic Energy

Author:  Huiling Wang, Dongsheng Qian, Feng Wang, Jiancheng Chen

Journal: Gaodianya Jishu High Voltage Engineering.

Year: 2025