Masoumeh Bararzadeh Ledari | Energy Sustainability | Editorial Board Member

Dr. Masoumeh Bararzadeh Ledari | Energy Sustainability | Editorial Board Member

Dr. Masoumeh Bararzadeh Ledari | Amirkabir University of Technology | Iran

Dr. Masoumeh Bararzadeh Ledari is an accomplished academic, researcher, and technical consultant specializing in energy engineering, climate change, sustainable resource management, and decarbonization strategies, with significant experience across academia, industry, and international collaborations. She earned her Ph.D. in Energy Engineering from Sharif University of Technology, Tehran (2014–2021), where her doctoral thesis focused on hybrid technology evaluation models for minimizing ecosystem sustainability impacts, following her M.Sc. in Energy Engineering from the same institution (2009–2011) and a B.Sc. in Chemical Engineering from the University of Tehran (2004–2008). Throughout her career, she has held academic positions as Lecturer, Adjunct Professor, and Instructor at leading Iranian universities, including AmirKabir University of Technology, Sharif University of Technology, and the University of Tehran, where she has taught courses in renewable energy systems, waste management, building energy simulation, and optimization. Her professional experience extends to leadership roles such as Scientific Director at Tadbirgaran Energy Company, Technical Manager at the Presidential Center for Progress and Development, and Head of Technology Management Groups at multiple organizations, including Butia Steel Company and Engineering & Industrial Management Consultants Group, where she has directed projects in hydrogen energy transition, carbon capture and storage, petrochemical value chains, and energy-environmental modeling. She has also contributed internationally as a Research Scientist at the International Institute for Applied Systems Analysis (IIASA) in Austria and the Research Centre for Energy Resources and Consumption in Spain, focusing on water-food-energy nexus models and thermodynamic modeling of biosystems. Her research interests include climate change mitigation, regenerative life models, corporate decarbonization in petrochemical and steel industries, exergy-based ecosystem analysis, and AI-driven energy optimization. Skilled in technical-economic feasibility studies, LCA/LCP modeling, energy policy, greenhouse gas accounting, and process simulation, she has authored influential research cited over 400 times (h-index 11). Her honors include leading multi-sectoral projects with UNDP, FAO, and national ministries on climate policy, stakeholder engagement, and natural resource management. In conclusion, Masoumeh Bararzadeh Ledari has established herself as a versatile scholar and practitioner who bridges academia, industry, and policymaking, advancing innovative approaches to sustainable energy, climate resilience, and decarbonization pathways, while contributing to both national development and global sustainability initiatives.

Profile: Scopus | Google scholar

Featured Publications

Sabet, A. F., Ledari, M. B., Maleki, F., & Fani, M. (2025). Exergy and thermoeconomic comparison of sustainable methanol and ammonia production from waste and CO₂. Journal of Environmental Chemical Engineering, 119148.

Ledari, M. B., Barkhordar, Z. A., & Maleki, F. (2025). Unveiling the potential of bio-based petrochemical development for a sustainable circular economy: A global perspective. Chemical Engineering Journal, 167974.

Kordi, A., Mohebbi, K., Ledari, M. B., & Shirafkan, S. M. (2025). Transforming ports for a low-carbon future: Nexus modeling of hydrogen infrastructure, employment, and resource management in contrasting climates. Energy Nexus, 100515.

Shirafkan, S. M., Ledari, M. B., Mohebbi, K., Fani, M., & Vahedi, R. (2025). Revolutionising the petrochemical supply chain: Integrating waste and CO₂ from CCUS into a low-carbon circular economy framework. Journal of Environmental Chemical Engineering, 116722.

Wahad Rahman | Energy Sustainability | Best Researcher Award

Mr. Wahad Rahman | Energy Sustainability | Best Researcher Award

Mr. Wahad Rahman | University of Engineering and Technology Peshawar | Pakistan

A highly skilled engineering professional with extensive experience in mechatronics, renewable energy systems, additive manufacturing, and Internet of Things (IoT) technologies. With a strong academic foundation including advanced research in hybrid energy harvesting systems, this expert has contributed significantly to cutting-edge developments in sustainable power solutions for sensor networks and pipeline monitoring applications. Current work in additive manufacturing and reverse engineering involves leading research and development initiatives, operating advanced 3D printing technologies (FDM, SLA), managing high-precision 3D scanning, and conducting specialized training programs. This blends practical engineering with innovation-driven problem-solving across industrial and applied research environments. Previously, research contributions in sensor and energy harvesting systems included the design and development of micro Kaplan and Crossflow turbines, IoT-based pipeline monitoring solutions, energy-efficient wireless sensor nodes, and experimental setups for testing hybrid energy harvesters. These projects demonstrate strong proficiency in mechanical design, simulation, prototyping, and system integration. With several years of experience in academia, this professional has taught undergraduate theory and laboratory courses in mechanics of materials, fluid mechanics, robotics, and engineering software tools such as MATLAB and SolidWorks. Extensive involvement in STEM capacity-building programs further highlights commitment to engineering education and technology dissemination. Research expertise spans renewable energy, hybrid and flow-based energy harvesting, control systems, self-powered systems, power management circuits, wireless sensors, and IoT technologies. Published work includes multiple journal articles in reputable international outlets focusing on piezoelectric, electromagnetic, and hybrid energy harvesters, turbine modeling, RF energy harvesting, and sensor network applications. Professional development includes specialized training in IoT, Arduino, Raspberry Pi, MATLAB, image processing, robotics, content writing, and digital marketing, demonstrating a broad multidisciplinary skillset. Overall, this profile reflects a dynamic researcher and engineer dedicated to advancing sustainable energy solutions, intelligent monitoring systems, and modern manufacturing technologies.

Profiles: Orcid | LinkedIn | Google Scholar

Featured Publications

Rahman, W. U., & Khan, F. U. (2025). A hybrid flow energy harvester to power an IoT-based wireless sensor system for the digitization and monitoring of pipeline networks. Machines, 13(11). https://doi.org/10.3390/machines13111025

Rahman, W. U., & Khan, F. U. (2025). An integrated fluid flow and solar hybrid energy harvester for pipeline monitoring system. AIP Advances. https://doi.org/10.1063/5.0284001

Rahman, W. U., & Khan, F. U. (2025). A survey of flow-based energy harvesters for powering sustainable wireless sensor nodes. Journal of Renewable and Sustainable Energy. https://doi.org/10.1063/5.0237597

Rahman, W. U., & Khan, F. U. (2023). A hybrid flow energy harvester using combined piezoelectric and electromagnetic transductions for pipeline network monitoring. Journal of Intelligent Material Systems and Structures. https://doi.org/10.1177/1045389X221147647

Mr. Wenzhuang Liu | Energy Sustainability | Best Researcher Award | 2573

Mr. Wenzhuang Liu | Energy Sustainability | Best Researcher Award

Mr. Wenzhuang Liu | North China University of Science and Technology | China

This researcher has built a strong academic foundation in energy systems and renewable energy integration, focusing on innovative methods to enhance the flexibility, efficiency, and sustainability of modern power grids. With advanced studies in engineering thermophysics and hands-on experience in multiple research projects, the researcher has developed a deep understanding of thermodynamics, energy storage systems, and the challenges associated with large-scale renewable energy integration under contemporary carbon-neutrality goals. A key contribution is the development of an optimized configuration regulation method for energy storage systems (ESS) designed to address peak-shaving pressures arising from the widespread adoption of renewable energy. This method integrates deep peak shaving of thermal power units with coordinated demand-side response strategies, forming a comprehensive source-load-storage interaction model. By accounting for uncertainties in renewable generation and dynamic load variations, the framework enhances system responsiveness and operational flexibility. Simulation studies conducted across multiple scheduling scenarios demonstrate substantial improvements, including reductions in overall operation cost, unit operating cost, and renewable energy input cost. The findings highlight the method’s potential to significantly boost renewable energy utilization while maintaining economic and operational stability in power systems. Beyond this flagship innovation, the researcher has contributed to ongoing projects related to optimizing energy storage configurations for enhanced peak regulation. Their scholarly output includes publications in reputable journals and active engagement in funded research initiatives supported by scientific foundations and industrial laboratories. The researcher has also patented a novel ESS configuration approach centered on deep peak shaving and source-load-storage coordination. Overall, the researcher’s work advances both theoretical and application-oriented dimensions of renewable energy integration. Their contributions support more resilient, responsive, and economically viable power systems, making a meaningful impact on the transition toward low-carbon energy futures and reinforcing their suitability for recognition under research excellence awards.

Profiles: ScopusOrcid 

Featured Publications

Liu, J., Zhang, Z., Xie, Q., & Liu, W. (2024). Dual-phase model: Estimating the temperature and hydrodynamic size of magnetic nanoparticles with protein-corona formation. Applied Physics Letters. https://doi.org/10.1063/5.0199403

Li, L., Yi, W., Cui, X., & Liu, W. (2023). Rapid and high sensitivity temperature measurement based on near-extinction photoelastic modulated magneto-optical Kerr effect of Fe-Gd nanofilm. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2023.3323049

Liu, J., Huang, P., Zhang, Z., Xie, Q., & Liu, W. (2023). The nonlinear dynamics of magnetic nanoparticles: A thermometry in complex magnetic fields. Applied Physics Letters. https://doi.org/10.1063/5.0151058

Cui, X., Li, L., & Liu, W. (2022). A rapid and sensitive magnetic immunoassay of biomolecules based on magnetic nanoparticles. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2022.3216405

Guo, S., Yi, W., & Liu, W. (2022). Biological thermometer based on the temperature sensitivity of magnetic nanoparticle paraSHIFT. Nanotechnology. https://doi.org/10.1088/1361-6528/ac3b81

Peng, H., Cheng, C., Wan, Q., Jia, S., Wang, S., Lv, J., Liang, D., Liu, W., Liu, X., Zheng, H., et al. (2022). Fast multi-parametric imaging in abdomen by B1+ corrected dual-flip angle sequence with interleaved echo acquisition. Magnetic Resonance in Medicine. https://doi.org/10.1002/mrm.29127

Xue Li | Energy Sustainability | Best Researcher Award

Ms. Xue Li | Energy Sustainability | Best Researcher Award

Ms. Xue Li | Wuhan Institute of Technology | China

Dr. Li Xue received her Ph.D. in Thermal Engineering from Dalian University of Technology in 2021. She is currently a faculty member at the School of Optical Information and Energy Engineering, Wuhan Institute of Technology. Her core research focuses on the near-wall collisions of microscale particles and the fundamentals of particle dynamics. She investigates how microscale interactions influence fluid flow, heat transfer, and energy conversion processes. Her studies contribute to advancing knowledge in microfluidics, aerosol science, and particulate system behavior. By integrating theoretical modeling with experimental validation, she addresses key challenges in microscale transport phenomena. Her work aims to improve the design of energy systems with higher efficiency and better control of particle interactions. She is also interested in the application of microscale particle research in thermal management and engineering systems. Through her academic contributions, she supports interdisciplinary advancements bridging thermal engineering and energy science. Dr. Xue continues to expand her research portfolio while mentoring students in innovative areas of energy and particle engineering.

Profile: Orcid

Featured Publications

Li, X., Xie, J., Dong, M., Chen, S., & Dong, W. (2024). Could the rebound characteristics of oblique impact for SiO₂ particles represent the ash particles? ACS Omega, 9(9), 10564–10574.

Li, X., Dong, M., Zhang, H., Li, S., & Shang, Y. (2020). Effect of surface roughness on capillary force during particle-wall impaction under different humidity conditions. Powder Technology, 369, 253–261.

Li, X., Dong, M., Jiang, D., Li, S., & Shang, Y. (2020). The effect of surface roughness on normal restitution coefficient, adhesion force and friction coefficient of the particle-wall collision. Powder Technology, 361, 311–320.

Li, X., Dong, M., Li, S., & Shang, Y. (2019). Experimental and theoretical studies of the relationship between dry and humid normal restitution coefficients. Journal of Aerosol Science, 130, 67–76.

Dong, M., Mei, Y., Li, X., Shang, Y., & Li, S. (2018). Experimental measurement of the normal coefficient of restitution of micro-particles impacting on plate surface in different humidity. Powder Technology, 334, 52–60.

Dong, M., Li, X., Mei, Y., & Li, S. (2018). Experimental and theoretical analyses on the effect of physical properties and humidity of fly ash impacting on a flat surface. Journal of Aerosol Science, 117, 121–131.