Prof. Xinping Duan | Green Chemistry | Research Excellence Award
Prof. Xinping Duan | Xiamen University | China
Prof. Xinping Duan of Xiamen University, China, is an internationally recognized researcher in catalysis, materials chemistry, and sustainable chemical transformations. With a distinguished academic career spanning nearly two decades, he has established himself as a leading figure in the fields of heterogeneous catalysis, CO₂ conversion, selective hydrogenation, photocatalysis, and advanced nanomaterials. His research contributions have significantly advanced the understanding of catalytic mechanisms, metal–support interactions, and rational catalyst design for energy-efficient and environmentally friendly chemical processes. Prof. Duan’s scientific impact is reflected in his outstanding publication metrics: over 72 papers, an H-index of 33, and more than 3,318 citations. His work consistently appears in top-tier journals, including Science, Nature Communications, Science Advances, ACS Catalysis, Chemical Engineering Journal, Journal of Catalysis, and Chemical Science. Several of his landmark papers—such as those on copper–silica nanocatalysts, selective CO₂ hydrogenation, and novel metal oxide interfaces—have received exceptional citation counts and have influenced both academic research and industrial catalyst development. A hallmark of Prof. Duan’s research is his ability to integrate advanced nanostructures, metal phosphides, metal carbides, and polyoxometalates to achieve high catalytic selectivity and stability. His studies on hydrogenolysis, hydrogenation, and biomass-derived oxygenate conversion have contributed to the development of greener pathways for producing fuels, fine chemicals, and value-added intermediates. He has also explored cutting-edge topics such as oxygen vacancy engineering, interfacial electron localization, spillover effects, and ambient-pressure catalytic processes. Through his rigorous research approach and sustained scientific productivity, Prof. Xinping Duan has earned a strong reputation as a catalyst innovation leader in China and abroad. His work continues to shape modern heterogeneous catalysis, clean energy conversion, and sustainable chemical engineering, positioning him as a prominent contributor to global scientific advancement.
Profile: Scopus | Orcid
Featured Publications
Lin, H., Liang, X., Wen, Z., Jiao, W., Wang, R., Lian, Y., & Duan, X. (2025). The superiority of W⁶⁺ overturns the CO₂ hydrogenation selectivity of iridium. Chemical Communications. https://doi.org/10.1039/D5CC02796A
Cheng, T., Liu, Y., Miao, F., Duan, X., & Liu, Y., & Jiao, W. (2025, July). Catalytic ozonation degradation of sulfamethoxazole by high gravity coupled monolithic catalyst Ce–Co/CH: Efficacy, mechanism, pathways and toxicity. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2025.163553
Duan, X., Zhao, Y., Chou, H.-L., Zuo, J., Wang, R., Jiao, W., Fang, H., Zheng, Y., Lin, H., Ye, L., et al. (2025, March 7). Reversible spillover wakens reactivity of dormant modular hydrochlorination catalysts. ACS Catalysis. https://doi.org/10.1021/acscatal.4c06661
Duan, X., Zuo, P., Li, N., Lu, J., Zhang, J., Wen, Z., Fang, H., Jiao, W., Wang, R., & Lin, H. (2024, October 22). Collective redox-shuttling properties of nanoalloys boost water electrolysis of nitrides [Preprint]. https://doi.org/10.21203/rs.3.rs-5236379/v1
Ji, X., Zhang, J., Li, N., Qiu, L., Zhang, G., Duan, X., & Wang, R. (2024, May 13). Accelerated “electron converter” characteristics of NiCo-LDH for a CdS-carbide photocatalytic system with a dual heterointerface. ACS Sustainable Chemistry & Engineering. https://doi.org/10.1021/acssuschemeng.4c00778
Ji, X., Zhang, J., Zhang, G., Li, N., Wang, R., Lin, H., & Duan, X. (2024, April). Dual interfacing with metallic cobalt boosts the electron shuttle of CdS-carbide nanoassemblies. Journal of Colloid and Interface Science. https://doi.org/10.1016/j.jcis.2024.01.142