Getahun Ayele Tessema | Energy Sustainability | Best Researcher Award

Mr. Getahun Ayele Tessema | Energy Sustainability | Best Researcher Award

Mr. Getahun Ayele Tessema | Indian Institute of Technology Roorkee (IITR) | India

Getahun Ayele Tessema is an emerging researcher and PhD Candidate at the Indian Institute of Technology Roorkee (IITR), specializing in energy efficiency and sustainable built environments. He holds a B.Tech and Master’s degree with distinction and previously served as a Lecturer at Adama Science and Technology University, where he earned the Best Teacher Award for his academic excellence. Currently supported by the prestigious ICCR Africa PhD Scholarship from the Government of India, he continues to advance impactful research in the Built Environment Lab at IIT Roorkee. His academic and professional journey reflects consistent excellence, with active engagement in research, teaching, and community-oriented scientific contributions. He has completed or is working on five research projects, published two journal papers, and maintains a growing citation record accessible through Google Scholar. His collaborative work spans international and institutional partnerships, and he holds memberships in two professional organizations aligned with his research areas. Getahun’s research focuses on energy-efficient buildings, energy modelling, energy-use behaviour, and energy analysis. His contributions offer significant insights into the determinants of household energy-saving behaviour in Ethiopian urban settings. By integrating personal norms with the Theory of Planned Behaviour, he has developed a comprehensive framework that helps understand and influence energy-conscious behaviour. This work supports the development of national energy conservation strategies and provides a scientific basis for formulating building energy codes—an urgent need for sustainable urban growth in Ethiopia. His findings aim to guide policymakers, enhance occupant awareness, and contribute to cleaner energy access through practical, community-responsive solutions. Through his multidisciplinary research, academic leadership, and commitment to sustainable development, Getahun exemplifies innovation, scholarly excellence, and societal impact. His work aligns strongly with the vision of promoting energy-efficient built environments and positions him as a strong candidate for the Best Researcher Award.

Profile: Google Scholar

Featured Publications

Tessema, G. A., Chani, P. S., & Rajasekar, E. (2025). Analysis of residential electricity consumption in Ethiopian condominiums: Leveraging cluster analysis for targeted electrification interventions. In 2025 IEEE 13th International Conference on Smart Energy Grid Engineering (SEGE). IEEE.

Tessema, G. A., Chani, P. S., & Rajasekar, E. (2025). Modelling energy-saving behaviour in Ethiopian urban households: Integrating personal norms and demographic moderators to the theory of planned behaviour. Energy and Buildings, , 116709.

Jimmy Romanos | Energy Sustainability | Excellence in Research

Dr. Jimmy Romanos | Energy Sustainability | Excellence in Research

Dr. Jimmy Romanos | Lebanese American University | Lebanon

Dr. Jimmy Romanos is an Associate Professor of Physics at the Lebanese American University, with a distinguished record in interdisciplinary research spanning thermal physics, materials science, and energy storage. He holds a Ph.D. in Physics from the University of Missouri, USA, and has extensive experience in both academia and industry, including leadership roles as a lead materials scientist in the U.S. and as a consultant in the energy sector. His research focuses on atomic-scale thermodynamic processes in gas adsorption, targeting applications such as carbon dioxide capture, methane and hydrogen storage, gas separation, and lead-free ceramics. Dr. Romanos has been recognized with the Shoman Award for Arab Researchers in Physics, becoming the first Lebanese physicist to receive this honor. He has led numerous funded projects, both intramural and extramural, and holds multiple patents in advanced carbon materials and gas storage technologies. With over a decade of prolific contributions through peer-reviewed publications, conference presentations, and industrial reports, his work bridges computational, theoretical, and experimental approaches to address critical challenges in energy and environmental technologies.

Profile:  Google Scholar 

Featured Publications

Romanos, J., Beckner, M., Rash, T., Firlej, L., Kuchta, B., Yu, P., Suppes, G., … (2012). Nanospace engineering of KOH activated carbon. Nanotechnology, 23(015401), 1–11. https://doi.org/10.1088/0957-4484/23/1/015401

Kuchta, B., Firlej, L., Mohammadhosseini, A., Boulet, P., Beckner, M., … Romanos, J. (2012). Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: Open carbon frameworks. Journal of the American Chemical Society, 134(36), 15130–15137. https://doi.org/10.1021/ja3062439

Romanos, J., Burress, J., Pfeifer, P., Rash, T., Shah, P., Suppes, G. (2012). High surface area carbon and process for its production. US Patent 20130190542A1.

Beckner, M., Romanos, J., Dohnke, E., … (2011). Analysis of hydrogen sorption characteristics of boron-doped activated carbons. Bulletin of the American Physical Society, 56.

Soo, Y. C., Beckner, M., Romanos, J., Wexler, C., Pfeifer, P., Buckley, P., … (2011). A high volume, high throughput volumetric sorption analyzer. Bulletin of the American Physical Society, 56(1), 20003.

Xue Li | Energy Sustainability | Best Researcher Award

Ms. Xue Li | Energy Sustainability | Best Researcher Award

Ms. Xue Li | Wuhan Institute of Technology | China

Dr. Li Xue received her Ph.D. in Thermal Engineering from Dalian University of Technology in 2021. She is currently a faculty member at the School of Optical Information and Energy Engineering, Wuhan Institute of Technology. Her core research focuses on the near-wall collisions of microscale particles and the fundamentals of particle dynamics. She investigates how microscale interactions influence fluid flow, heat transfer, and energy conversion processes. Her studies contribute to advancing knowledge in microfluidics, aerosol science, and particulate system behavior. By integrating theoretical modeling with experimental validation, she addresses key challenges in microscale transport phenomena. Her work aims to improve the design of energy systems with higher efficiency and better control of particle interactions. She is also interested in the application of microscale particle research in thermal management and engineering systems. Through her academic contributions, she supports interdisciplinary advancements bridging thermal engineering and energy science. Dr. Xue continues to expand her research portfolio while mentoring students in innovative areas of energy and particle engineering.

Profile: Orcid

Featured Publications

Li, X., Xie, J., Dong, M., Chen, S., & Dong, W. (2024). Could the rebound characteristics of oblique impact for SiO₂ particles represent the ash particles? ACS Omega, 9(9), 10564–10574.

Li, X., Dong, M., Zhang, H., Li, S., & Shang, Y. (2020). Effect of surface roughness on capillary force during particle-wall impaction under different humidity conditions. Powder Technology, 369, 253–261.

Li, X., Dong, M., Jiang, D., Li, S., & Shang, Y. (2020). The effect of surface roughness on normal restitution coefficient, adhesion force and friction coefficient of the particle-wall collision. Powder Technology, 361, 311–320.

Li, X., Dong, M., Li, S., & Shang, Y. (2019). Experimental and theoretical studies of the relationship between dry and humid normal restitution coefficients. Journal of Aerosol Science, 130, 67–76.

Dong, M., Mei, Y., Li, X., Shang, Y., & Li, S. (2018). Experimental measurement of the normal coefficient of restitution of micro-particles impacting on plate surface in different humidity. Powder Technology, 334, 52–60.

Dong, M., Li, X., Mei, Y., & Li, S. (2018). Experimental and theoretical analyses on the effect of physical properties and humidity of fly ash impacting on a flat surface. Journal of Aerosol Science, 117, 121–131.

Asif Khan | Clean Energy | Best Researcher Award

Dr. Asif Khan | Clean Energy | Best Researcher Award 

Dr. Asif Khan | University of Science and Technology Bannu kpk | Pakistan

Asif Nawaz Khan is a committed physicist and lecturer at the University of Science and Technology Bannu, with extensive experience in teaching and research at both undergraduate and postgraduate levels. He is currently pursuing a Ph.D. in Physics and has developed strong expertise in computational and theoretical physics, particularly in the design and analysis of 2D and 3D perovskite materials. His research encompasses structural, optical, thermoelectric, elastic, and thermodynamic properties, alongside solar cell device performance, phonon calculations, and molecular dynamics simulations. Proficient in advanced simulation software and machine learning techniques, he actively supervises students in both experiments and computational modeling, contributing significantly to the advancement of materials science.

Profile: Google Scholar

Featured Publications

Khan, A., Khan, N. U., Nawaz, A., & Ullah, K., & Manan, A. (2024). A DFT study to explore structural, electronic, optical and mechanical properties of lead-free Na2MoXO6 (X= Si, Ge, Sn) double perovskites for photovoltaic and optoelectronic applications. Computational and Theoretical Chemistry, 1240, 114834.

Hosen, A., Mousa, A. A., Nemati-Kande, E., Khan, A. N., Abu-Jafar, M. S., … (2025). Systematic computational screening and design of double perovskites Q2LiMH6 (Q= K, Rb; M= Ga, In, Tl) for efficient hydrogen storage: A DFT and AIMD approach. Surfaces and Interfaces, 106608.

Khan, A. N., Rabhi, S., Jehangir, M. A., Charif, R., Khan, N. U., Begagra, A., … (2025). Evaluating A2SrGeI6 (A= K and Rb) lead-free double perovskites: Structural, elastic, and optoelectronic insights for clean energy. Inorganic Chemistry Communications, 174, 113949.

Khan, N. U., Ghani, U., Khan, A., Khan, A. N., Ullah, K., Ali, R., & Fadhali, M. M. (2025). Theoretical insight into stabilities and optoelectronic properties of RbZnX3 (X= Cl, Br) halide perovskites for energy conversion applications. Optical and Quantum Electronics, 57(1), 109.

Rabhi, S., Khan, A. N., Chinoune, O., Charif, R., Bouri, N., Al-Qaisi, S., Sadaf, S., … (2025). Insight into NaSiCl3: A lead-free perovskite for the next generation revealed by DFT and SCAPS-1D. Physical Chemistry Chemical Physics, 27(25), 13490–13507.

Hosen, A., Sadeghi, A., Abdulhussein, H. A., Nemati-Kande, E., Khan, A. N., … (2025). First-principles insights into NaScQH6 (Q= Fe, Ru, Os): Promising high-density hydrogen storage materials. International Journal of Hydrogen Energy, 177, 151392.

Khan, A. N., Khan, N. U., Khan, A., Ali, R., & Fadhali, M. M. (2025). Lead-free, stable, and effective double Ca2TiXO6 (X= Ge, Sn) perovskites for photovoltaic application. Journal of Sol-Gel Science and Technology, 1–13.

Khan, A. N., Kaleem, M., Khan, N. U., Nasir, A., Khan, A., & Abbasi, M. Z. (2026). Multi-functional DFT and SCAPS-1D analysis of lead-free Z2MgGeI6 (Z= Na, K) double perovskites for optoelectronic, photo-catalytic, and photovoltaic applications. Solar Energy Materials and Solar Cells, 294, 113922.

Khan, A. N., Khan, N. U., Kaleem, M., Tanzeel, M., Nasir, A., Hosen, A., Akremi, A., … (2025). Lead-free X2MgGeI6 (X= Rb, Cs) double perovskites for multi-functional energy applications: A DFT and SCAPS-1D perspective. Solid State Sciences, 108049.

Khan, Z., Manan, A., Khan, N. U., Khan, A. N., Khan, A., & Liu, G., … (2025). Exploring Sn-based vacancy-ordered halide double perovskites Na2Sn(Cl/Br)6 for optoelectronic, thermoelectric, and solar-driven hydrogen reduction applications. Chemical Papers, 1–21.

Khan, Z., Manan, A., Khan, N. U., Khan, A. N., Khan, A., Joifullah, S., Al Yeamin, M., … (2025). DFT-driven pressure-induced modulation in K2TIYCl6: Unlocking pressure-responsive physical and photo-catalytic properties. Optical and Quantum Electronics, 57(7), 1–32.

Atar Singh Pipal | Climate Solutions | Best Researcher Award

Dr. Atar Singh Pipal | Climate Solutions | Best Researcher Award

Dr. Atar Singh Pipal | Devic Earth, Technology Research Park, IIT, hyderabad | India

Dr. Atar Singh Pipal is a leading Air Quality Scientist specializing in atmospheric chemistry, aerosol particle analysis, and air pollution mitigation. With a Ph.D. in Chemistry from Savitribai Phule Pune University, he brings over a decade of research experience across premier institutions including IITM Pune, PRL Ahmedabad, and international collaborations in Taiwan. He has authored over 40 high-impact publications , contributed to cutting-edge work on particulate matter characterization, health risk assessment, and CO₂ reduction technologies, and remains actively involved in international scientific forums and editorial boards.

Academic Profile 

Google Scholar

Education

Dr. Atar Singh Pipal holds a Ph.D. in Chemistry with a specialization in Atmospheric Chemistry from Savitribai Phule Pune University, awarded in 2016. His doctoral work focused on analyzing the chemical composition and morphological characteristics of particulate matter in urban environments. He also earned an M.Phil. in Chemistry from Dr. B.R. Ambedkar University, Agra, in 2009, where he studied water-soluble cations in PM10. His earlier education includes an M.Sc. in Chemistry and a B.Sc. in Zoology, Botany, and Chemistry, both from the same university, graduating with distinction.

Experience

Dr. Pipal has accumulated over 10 years of research experience across prominent institutions. He is currently an Air Quality Scientist at Devic Earth, associated with IIT Hyderabad. Previously, he worked as a Project Scientist-II at the Indian Institute of Tropical Meteorology (IITM), Pune. He has also held postdoctoral fellowships in India and Taiwan and served as a lecturer in Environmental and Analytical Chemistry, contributing significantly to research, field studies, and environmental monitoring.

Research Interests

His research interests span atmospheric aerosols, air pollution, aerosol morphology, black carbon, secondary pollutants, and climate-relevant emissions. He is also involved in air quality monitoring, source apportionment, and the development of low-cost sensor technologies for urban air quality management.

Awards

Dr. Pipal has received multiple accolades, including the International Young Scientist Award (2020), CSIR and SERB travel grants, and recognition from global conferences in the USA, Japan, and Europe. He is a member of leading scientific societies such as RSC, AGU, and AAAR and contributes to several editorial boards and scientific journals.

Publications

Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing

Authors: DS Bisht, UC Dumka, DG Kaskaoutis, AS Pipal, et al.
Journal: Science of the Total Environment (2015)

Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra

Authors: AS Pipal, A Kulshrestha, A Taneja
Journal: Atmospheric Environment,  (2011)

Variability in atmospheric particulates and meteorological effects on their mass concentrations over Delhi, India

Authors: S Tiwari, DS Bisht, AK Srivastava, AS Pipal, et al.
Journal: Atmospheric Research, (2014)

Study of surface morphology, elemental composition and origin of atmospheric aerosols over Agra

Authors: AS Pipal, R Jan, PG Satsangi, S Tiwari, A Taneja
Journal: Aerosol and Air Quality Research, (2014)

Intra-urban variability of particulate matter (PM2.5 and PM10) and its relationship with optical properties of aerosols over Delhi

Authors: S Tiwari, PK Hopke, AS Pipal, et al.
Journal: Atmospheric Research (2015)

Characteristics of trace metals in PM2.5 and PM10 and health risk assessment in indoor environments in India

Authors: PG Satsangi, S Yadav, AS Pipal, N Kumbhar
Journal: Atmospheric Environment (2014)

Conclusion

Dr. Atar Singh Pipal stands out as a dedicated and accomplished researcher in atmospheric and environmental sciences, with a strong academic foundation, diverse international experience, and impactful research contributions. His work bridges scientific investigation with real-world environmental solutions, particularly in the areas of air quality and climate mitigation. Through his active participation in global collaborations, editorial roles, and professional societies, he continues to advance the understanding of air pollution and its broader implications. His profile reflects a strong commitment to scientific excellence and societal relevance.