Hyoungsoo Kim | Scientific Breakthroughs | Research Excellence Award

Prof. Hyoungsoo Kim | Scientific Breakthroughs | Research Excellence Award

KAIST | South Korea

Dr. Hyoungsoo Kim is a Professor of Mechanical Engineering at KAIST and Principal Investigator of the Fluid & Interface Laboratory, where his research sits at the intersection of experimental fluid mechanics, soft-matter hydrodynamics, and interfacial instabilities. His work uncovers novel physicochemical phenomena across nano- to macro-scales using advanced optical diagnostics, custom experimental platforms, theoretical modeling, scaling laws, and data-driven analysis. He has made seminal contributions to Marangoni flows, evaporation-driven patterning, liquid-metal systems, and interfacial transport, with applications spanning uniform coatings, semiconductor processing, micro/nanoparticle removal, flexible electronics, metamaterials, and plasma control.

Citation Metrics (Google Scholar)

4000
3000
2000
1000
0

Citations
3234

h-index
28

i10-index
49

Citations

h-index

i10-index


View Google Scholar Profile

Featured Publications

Xingwang Bian | Scientific Breakthroughs | Research Excellence Award

Mr. Xingwang Bian | Scientific Breakthroughs | Research Excellence Award

Mr. Xingwang Bian | Beijing Vacuum Electronics Research Institute | China

Xingwang Bian is a senior-level researcher at the Beijing Vacuum Electronics Research Institute, working in the domain of vacuum electronics and high-frequency device engineering. He specializes in the research, design, and experimental development of traveling-wave tubes (TWTs) operating at millimeter-wave and terahertz (THz) frequencies — especially in the G-band. His work leverages advanced slow-wave structure designs, electron-beam systems, and optimized focusing/magnetics, aiming to push the power, bandwidth, and efficiency envelope for THz vacuum-electronic amplifiers.  Among his important contributions: he co-authored demonstration of a broadband continuous-wave G-band TWT providing multi-GHz bandwidth and tens of watts of output power — a promising step toward practical THz wireless communications and radar systems.  Bian has also been centrally involved in the development of pulsed G-band TWTs for radar applications, combining innovations in slow-wave structure (modified folded waveguide), high-current electron beams, and phase-velocity tapering to reach high output power levels (on the order of 100 W+ in pulsed operation) in a compact, vacuum-electronic device.  Through these efforts, Bian has helped advance what is arguably one of the leading THz-band vacuum-electronic technology pipelines from BVERI, contributing to both academic publications and applied-device development.  In sum: Bian is a specialized vacuum-electronics engineer/scientist whose expertise lies at the intersection of electromagnetic design, electron-beam physics, and high-frequency amplifier fabrication — with a clear emphasis on making high-power, wide-band, THz-band TWTs viable for radar, sensing, and communication applications.

Publication Profile

Scopus | ORCID

Featured Publications 

Bian, X., Pan, P., Du, X., Feng, Y., Li, Y., Song, B., & Feng, J. (2025). Design and experiment of modified folded waveguide slow wave structure for 60-W G-band traveling wave tube. IEEE Microwave and Wireless Technology Letters.

Bian, X., Pan, P., Xian, S., Yang, D., Zhang, L., Cai, J., & Feng, J. (2025). A G-band pulsed wave traveling wave tube for THz radar. Preprints.

Zhu, M., Cai, Y., Zhang, L., Zhang, J., Hua, B., Ma, K., Ding, J., Bian, X., et al. (2025). Surpassing kilometer-scale terahertz wireless communication beyond 300 GHz enabled by hybrid photonic–electronic synergy. Research Square.

Bian, X., Pan, P., Du, X., Song, B., Zhang, L., Cai, J., & Feng, J. (2024). Demonstration of a high-efficiency and wide-band 30-W G-band continuous wave traveling wave tube. IEEE Electron Device Letters.

Feng, Y., Bian, X., Song, B., Li, Y., Pan, P., & Feng, J. (2022). A G-band broadband continuous wave traveling wave tube for wireless communications. Micromachines