Tang Qingjun | Scientific Breakthroughs | Best Researcher Award

Assoc. Prof. Dr. Tang Qingjun | Scientific Breakthroughs | Best Researcher Award

Assoc. Prof. Dr. Tang Qingjun | Technical Institute of Physics and Chemistry, Chinese Academy of Sciences | China

This research portfolio centers on advancing space thermal control and cryogenic refrigeration technologies, with significant emphasis on precision temperature management, lightweight system design, and enhanced performance for scientific payloads in orbit. The work covers key technological domains such as flexible heat transfer, thermal matching for low-temperature devices, insulation support structures, contamination control, and integrated thermal–mechanical engineering for spacecraft. A major focus of the research involves developing high-precision low-temperature control systems for space missions, enabling stable operation of sensitive optical payloads in complex orbital environments. Through comprehensive mastery of mechanics, thermodynamics, electromagnetics, and automated temperature regulation, several critical engineering challenges were overcome. These include improving temperature stability, reducing micro-vibration output, and optimizing thermal interfaces for high-performance detection instruments. The resulting technologies enhanced the scientific capabilities of spaceborne payloads and earned recognition from international experts in spacecraft engineering. Another central contribution lies in the development of lightweight pulse tube cryocoolers for space applications. Under major scientific and engineering programs, extensive basic and applied studies were conducted to design and optimize compact refrigeration systems. A series of prototypes was successfully built, achieving significant reductions in mass while preserving cooling capacity, operational lifespan, and structural robustness. These innovations contribute to next-generation spacecraft refrigeration solutions, supporting advanced astronomical observations and deep-space scientific missions. The research integrates theoretical modeling, high-frequency performance analysis, experimental verification, and system-level optimization. Publications include studies on coaxial and single-stage pulse tube cryocoolers, micro-scale units capable of reaching extremely low temperatures, inertance tube phase-shifting characteristics, multi-cold-finger systems, and thermo-mechanical behavior of cryogenic components. The work has appeared in leading scientific journals and international conferences covering thermal engineering, cryogenics, refrigeration science, and astronomical instrumentation. Collectively, these contributions advance cutting-edge cryogenic and thermal control technologies essential to modern space science, supporting higher-accuracy payloads, more efficient cooling solutions, and improved performance of future spacecraft systems.

Profile: Scopus

Featured Publications

Liu, C., Tian, B., Ma, J., Niu, Y., Tang, Q., Ma, Y., & Cai, J. (2025). Experimental investigation of a single-stage micro pulse tube cryocooler operating at 59 Hz with liquid nitrogen precooling: Achieving 14.8 K under 5 W input power. International Journal of Refrigeration.

Tian, B., Liu, C., Ma, J., Niu, Y., Tang, Q., Ma, Y., & Cai, J. (2025). Investigation on a micro pulse tube cryocooler operating at 152 Hz. Cryogenics.