Tang Qingjun | Scientific Breakthroughs | Best Researcher Award

Assoc. Prof. Dr. Tang Qingjun | Scientific Breakthroughs | Best Researcher Award

Assoc. Prof. Dr. Tang Qingjun | Technical Institute of Physics and Chemistry, Chinese Academy of Sciences | China

This research portfolio centers on advancing space thermal control and cryogenic refrigeration technologies, with significant emphasis on precision temperature management, lightweight system design, and enhanced performance for scientific payloads in orbit. The work covers key technological domains such as flexible heat transfer, thermal matching for low-temperature devices, insulation support structures, contamination control, and integrated thermal–mechanical engineering for spacecraft. A major focus of the research involves developing high-precision low-temperature control systems for space missions, enabling stable operation of sensitive optical payloads in complex orbital environments. Through comprehensive mastery of mechanics, thermodynamics, electromagnetics, and automated temperature regulation, several critical engineering challenges were overcome. These include improving temperature stability, reducing micro-vibration output, and optimizing thermal interfaces for high-performance detection instruments. The resulting technologies enhanced the scientific capabilities of spaceborne payloads and earned recognition from international experts in spacecraft engineering. Another central contribution lies in the development of lightweight pulse tube cryocoolers for space applications. Under major scientific and engineering programs, extensive basic and applied studies were conducted to design and optimize compact refrigeration systems. A series of prototypes was successfully built, achieving significant reductions in mass while preserving cooling capacity, operational lifespan, and structural robustness. These innovations contribute to next-generation spacecraft refrigeration solutions, supporting advanced astronomical observations and deep-space scientific missions. The research integrates theoretical modeling, high-frequency performance analysis, experimental verification, and system-level optimization. Publications include studies on coaxial and single-stage pulse tube cryocoolers, micro-scale units capable of reaching extremely low temperatures, inertance tube phase-shifting characteristics, multi-cold-finger systems, and thermo-mechanical behavior of cryogenic components. The work has appeared in leading scientific journals and international conferences covering thermal engineering, cryogenics, refrigeration science, and astronomical instrumentation. Collectively, these contributions advance cutting-edge cryogenic and thermal control technologies essential to modern space science, supporting higher-accuracy payloads, more efficient cooling solutions, and improved performance of future spacecraft systems.

Profile: Scopus

Featured Publications

Liu, C., Tian, B., Ma, J., Niu, Y., Tang, Q., Ma, Y., & Cai, J. (2025). Experimental investigation of a single-stage micro pulse tube cryocooler operating at 59 Hz with liquid nitrogen precooling: Achieving 14.8 K under 5 W input power. International Journal of Refrigeration.

Tian, B., Liu, C., Ma, J., Niu, Y., Tang, Q., Ma, Y., & Cai, J. (2025). Investigation on a micro pulse tube cryocooler operating at 152 Hz. Cryogenics.

Alexander Migdal | Scientific Breakthroughs | Best Researcher Award

Prof. Alexander Migdal | Scientific Breakthroughs | Best Researcher Award 

Prof. Alexander Migdal | Institute for Advanced Study | United States

Alexander A. Migdal is a renowned theoretical physicist with a lifetime of pioneering contributions to mathematical and theoretical physics. Currently a Member of the School of Mathematics at the Institute for Advanced Study, Princeton, he has advanced key areas of physics including quantum field theory, gauge theory, turbulence, and quantum gravity. Educated at the Landau Institute for Theoretical Physics, Migdal has held leading academic positions at prestigious institutions such as Princeton University and New York University. His groundbreaking work includes the Migdal–Kadanoff recursion equations, the Makeenko–Migdal loop equations in large-N QCD, the matrix model solution of two-dimensional quantum gravity, and recent advances in the exact solution of turbulence. Internationally recognized for his achievements, he has received distinguished honors such as the Landau–Weizmann Award and has delivered invited lectures across the globe, continuing to shape modern physics and inspire new generations of researchers.

Profile: OrcidGoogle Scholar

Featured Publications

Migdal, A. (2025). Spontaneous quantization of the Yang–Mills gradient flow. Nuclear Physics B. Advance online publication.

Migdal, A. (2025). Duality of Navier–Stokes to a one-dimensional system. International Journal of Modern Physics A. Advance online publication.

Migdal, A. (2024, December 23). Fluid dynamics duality and solution of decaying turbulence. Preprints.

Migdal, A. (2024, November 12). Duality of the Navier–Stokes dynamics and lack of finite-time explosion (Version 2). Preprints.

Migdal, A. (2024, November 5). Duality of the Navier–Stokes dynamics and lack of finite-time explosion (Version 1). Preprints.

Migdal, A. (2024). Quantum solution of classical turbulence: Decaying energy spectrum. Physics of Fluids, 36(9), 095117.

Migdal, A. (2024, August 4). Quantum solution of classical turbulence: Decaying energy spectrum (Version 3). Qeios.

Migdal, A. (2024, July 9). Quantum solution of classical turbulence: Decaying energy spectrum (Version 14). Preprints.

Migdal, A. (2024, July 9). Quantum solution of classical turbulence: Decaying energy spectrum (Version 2). Qeios.

Migdal, A. (2024, July 3). Quantum solution of classical turbulence: Decaying energy spectrum. Qeios.

Migdal, A. (2024, June 3). Quantum solution of classical turbulence: Decaying energy spectrum (Version 12). Preprints.

Migdal, A. (2024, May 6). Quantum solution of classical turbulence: Decaying energy spectrum (Version 11). Preprints.