Sayak Chatterjee | Research Excellence | Best Researcher Award

Dr. Sayak Chatterjee | Research Excellence | Best Researcher Award

Dr. Sayak Chatterjee | University of Massachusetts | United States

Dr. Sayak Chatterjee is a distinguished Postdoctoral Research Scholar in the Department of Physics at the University of Massachusetts Amherst, USA, specializing in experimental high-energy nuclear and particle physics. His research focuses on precision measurements, detector development, and high-rate data acquisition systems for frontier experiments such as MOLLER at Jefferson Lab and CBM at FAIR, Germany. With advanced expertise in Gas Electron Multipliers (GEM), Cherenkov detectors, and GEANT4-based simulations, he has contributed significantly to detector innovation and performance optimization. Dr. Chatterjee has an impressive academic record, authoring 44 research documents with 179 citations and an h-index of 7, reflecting the impact of his contributions to detector physics. His scholarly excellence has been recognized through multiple international honors, including the Ernest Rutherford Best Researcher Award and the Young Research Grant at the Pisa Meeting on Advanced Detectors, Italy. Beyond research, he serves on editorial boards, reviews for leading journals, and actively mentors students, embodying excellence in both scientific innovation and academic leadership.

Profiles:  ORCID | Scopus | Google Scholar | LinkedIn

Featured Publications

Chatterjee, S. (2025). Characterization of Cherenkov detectors for the MOLLER experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

Mandal, S., Chatterjee, S., Sen, A., Gope, S., Dhani, S., Hegde, A. C., … (2024). Investigation of the stability in the performance of triple GEM detectors for High Energy Physics experiments. Nuclear Instruments and Methods in Physics Research Section A.

Chatterjee, S., Sen, A., Das, S., & Biswas, S. (2023). Charging-up effect and uniformity study of a single mask triple GEM detector. Nuclear Instruments and Methods in Physics Research Section A.

Chatterjee, S., Sen, A., Das, S., & Biswas, S. (2023). Effect of relative humidity on the long-term operation of a single mask triple GEM chamber. Nuclear Instruments and Methods in Physics Research Section A.

Sen, A., Chatterjee, S., Das, S., & Biswas, S. (2023). Characterization of a new RPC prototype using conventional gas mixture. Nuclear Instruments and Methods in Physics Research Section A.

Alexander Migdal | Scientific Breakthroughs | Best Researcher Award

Prof. Alexander Migdal | Scientific Breakthroughs | Best Researcher Award 

Prof. Alexander Migdal | Institute for Advanced Study | United States

Alexander A. Migdal is a renowned theoretical physicist with a lifetime of pioneering contributions to mathematical and theoretical physics. Currently a Member of the School of Mathematics at the Institute for Advanced Study, Princeton, he has advanced key areas of physics including quantum field theory, gauge theory, turbulence, and quantum gravity. Educated at the Landau Institute for Theoretical Physics, Migdal has held leading academic positions at prestigious institutions such as Princeton University and New York University. His groundbreaking work includes the Migdal–Kadanoff recursion equations, the Makeenko–Migdal loop equations in large-N QCD, the matrix model solution of two-dimensional quantum gravity, and recent advances in the exact solution of turbulence. Internationally recognized for his achievements, he has received distinguished honors such as the Landau–Weizmann Award and has delivered invited lectures across the globe, continuing to shape modern physics and inspire new generations of researchers.

Profile: OrcidGoogle Scholar

Featured Publications

Migdal, A. (2025). Spontaneous quantization of the Yang–Mills gradient flow. Nuclear Physics B. Advance online publication.

Migdal, A. (2025). Duality of Navier–Stokes to a one-dimensional system. International Journal of Modern Physics A. Advance online publication.

Migdal, A. (2024, December 23). Fluid dynamics duality and solution of decaying turbulence. Preprints.

Migdal, A. (2024, November 12). Duality of the Navier–Stokes dynamics and lack of finite-time explosion (Version 2). Preprints.

Migdal, A. (2024, November 5). Duality of the Navier–Stokes dynamics and lack of finite-time explosion (Version 1). Preprints.

Migdal, A. (2024). Quantum solution of classical turbulence: Decaying energy spectrum. Physics of Fluids, 36(9), 095117.

Migdal, A. (2024, August 4). Quantum solution of classical turbulence: Decaying energy spectrum (Version 3). Qeios.

Migdal, A. (2024, July 9). Quantum solution of classical turbulence: Decaying energy spectrum (Version 14). Preprints.

Migdal, A. (2024, July 9). Quantum solution of classical turbulence: Decaying energy spectrum (Version 2). Qeios.

Migdal, A. (2024, July 3). Quantum solution of classical turbulence: Decaying energy spectrum. Qeios.

Migdal, A. (2024, June 3). Quantum solution of classical turbulence: Decaying energy spectrum (Version 12). Preprints.

Migdal, A. (2024, May 6). Quantum solution of classical turbulence: Decaying energy spectrum (Version 11). Preprints.