Julie Leignadier | Scientific Breakthroughs | Research Excellence Award

Dr. Julie Leignadier | Scientific Breakthroughs | Research Excellence Award

Lucas Meyer Cosmetics by Clariant | France

Dr. Julie Leignadier is an accomplished immunologist and biologist with extensive experience in both fundamental research and applied biotechnology. She earned her PhD in Montreal, where over five years she studied the mechanisms underlying the strength of the memory T cell receptor, gaining deep expertise in adaptive immunity and molecular signaling. Her doctoral work provided critical insights into immune memory and receptor dynamics, establishing a solid foundation for her future research. Following her PhD, Dr. Leignadier spent eight years as a postdoctoral researcher in leading Swiss and French laboratories, where she led multiple projects at the intersection of immunology and oncology. During this period, she honed her skills in experimental design, cellular and molecular biology, and translational research, contributing to high-impact publications and fostering international collaborations. Her work in cancer immunology emphasized understanding complex immune responses and translating fundamental findings into potential therapeutic strategies. In 2020, Dr. Leignadier joined Lucas Meyer Cosmetics by Clariant as Head of the Biology Laboratory, where she oversees the development of innovative and sustainable active ingredients for the cosmetics industry. In this role, she leverages her expertise in cellular biology and immunology to create biologically effective compounds that meet both consumer needs and environmental sustainability standards. Her leadership drives research initiatives that bridge cutting-edge science with industrial application, positioning the company at the forefront of sustainable cosmetic innovation. Dr. Leignadier remains committed to integrating scientific excellence with industrial innovation, applying her deep knowledge of immunology and molecular biology to deliver products that are both effective and environmentally responsible. Her career reflects a unique blend of academic rigor and practical expertise, making her a recognized leader in biologically informed cosmetic research.

 


View Orcid Profile

Featured Publications

Xingwang Bian | Scientific Breakthroughs | Research Excellence Award

Mr. Xingwang Bian | Scientific Breakthroughs | Research Excellence Award

Mr. Xingwang Bian | Beijing Vacuum Electronics Research Institute | China

Xingwang Bian is a senior-level researcher at the Beijing Vacuum Electronics Research Institute, working in the domain of vacuum electronics and high-frequency device engineering. He specializes in the research, design, and experimental development of traveling-wave tubes (TWTs) operating at millimeter-wave and terahertz (THz) frequencies — especially in the G-band. His work leverages advanced slow-wave structure designs, electron-beam systems, and optimized focusing/magnetics, aiming to push the power, bandwidth, and efficiency envelope for THz vacuum-electronic amplifiers.  Among his important contributions: he co-authored demonstration of a broadband continuous-wave G-band TWT providing multi-GHz bandwidth and tens of watts of output power — a promising step toward practical THz wireless communications and radar systems.  Bian has also been centrally involved in the development of pulsed G-band TWTs for radar applications, combining innovations in slow-wave structure (modified folded waveguide), high-current electron beams, and phase-velocity tapering to reach high output power levels (on the order of 100 W+ in pulsed operation) in a compact, vacuum-electronic device.  Through these efforts, Bian has helped advance what is arguably one of the leading THz-band vacuum-electronic technology pipelines from BVERI, contributing to both academic publications and applied-device development.  In sum: Bian is a specialized vacuum-electronics engineer/scientist whose expertise lies at the intersection of electromagnetic design, electron-beam physics, and high-frequency amplifier fabrication — with a clear emphasis on making high-power, wide-band, THz-band TWTs viable for radar, sensing, and communication applications.

Publication Profile

Scopus | ORCID

Featured Publications 

Bian, X., Pan, P., Du, X., Feng, Y., Li, Y., Song, B., & Feng, J. (2025). Design and experiment of modified folded waveguide slow wave structure for 60-W G-band traveling wave tube. IEEE Microwave and Wireless Technology Letters.

Bian, X., Pan, P., Xian, S., Yang, D., Zhang, L., Cai, J., & Feng, J. (2025). A G-band pulsed wave traveling wave tube for THz radar. Preprints.

Zhu, M., Cai, Y., Zhang, L., Zhang, J., Hua, B., Ma, K., Ding, J., Bian, X., et al. (2025). Surpassing kilometer-scale terahertz wireless communication beyond 300 GHz enabled by hybrid photonic–electronic synergy. Research Square.

Bian, X., Pan, P., Du, X., Song, B., Zhang, L., Cai, J., & Feng, J. (2024). Demonstration of a high-efficiency and wide-band 30-W G-band continuous wave traveling wave tube. IEEE Electron Device Letters.

Feng, Y., Bian, X., Song, B., Li, Y., Pan, P., & Feng, J. (2022). A G-band broadband continuous wave traveling wave tube for wireless communications. Micromachines

Xiaoping Ren | Scientific Breakthroughs | Distinguished Scientist Award

Prof. Dr. Xiaoping Ren | Scientific Breakthroughs | Distinguished Scientist Award

Prof. Dr. Xiaoping Ren | Affiliated Hospital of Guangxi University | China

Dr. Xiaoping Ren is an internationally recognized surgeon and scientist known for pioneering breakthroughs in hand transplantation, spinal cord fusion, and head transplantation research. He designed the world’s first clinical hand allotransplantation model, contributed to the United States’ first hand transplant, and discovered key mechanisms such as RPCT and RCI. He led landmark achievements including the first mouse head transplant, the first human head-transplant surgical model, and multiple world-first advances in spinal cord fusion that restored neural continuity in animal studies. His work established him as a global leader in paralysis treatment and regenerative reconstruction. Dr. Ren has earned major international honors, including election to the Russian Academy of Natural Sciences, fellowship of the International College of Surgeons, and leadership roles such as Chief Scientist of the GICUP Alliance, supported by an extensive publication record across microsurgery, neurology, cardiology, and regenerative medicine.

Profiles: Scopus 

Featured Publications

Ren, X., et al. (2025). Establishment of a canine model of vascularized allogeneic spinal cord transplantation and preliminary study on spinal cord continuity reconstruction. Chinese Journal of Reparative and Reconstructive Surgery.

Ren, X., et al. (2024). Recovery of independent ambulation after complete spinal cord transection in the presence of the neuroprotectant polyethylene glycol in monkeys. IBRO Neuroscience Reports.

Ren, X., et al. (2024). A novel strategy for spinal cord reconstruction via vascularized allogeneic spinal cord transplantation combined with spinal cord fusion. CNS Neuroscience and Therapeutics.

Ren, X., et al. (2024). Developing preclinical dog models for reconstructive severed spinal cord continuity via spinal cord fusion technique. IBRO Neuroscience Reports.

Ren, X., et al. (2023). Effect of vascularized lymph node transplantation combined with lymphatico-venous anastomosis in the treatment of lymphedema after breast cancer surgery. Chinese Journal of Plastic Surgery.

Sergey Pulinets | Scientific Breakthroughs | Best Researcher Award

Prof. Sergey Pulinets | Scientific Breakthroughs | Best Researcher Award

Prof. Sergey Pulinets | Space Research Institute of the Russian Academy of Sciences (RAS) | Russia

Prof. Sergey A. Pulinets is a leading geophysicist and space plasma physicist  in the fields of space plasma physics, ionospheric physics, and geophysics. A graduate of the Faculty of Physics at Lomonosov Moscow State University , he has held major scientific and administrative positions at IZMIRAN, the National Autonomous University of Mexico (UNAM), and the Institute of Applied Geophysics, before joining the Space Research Institute (IKI RAS) in 2009 as Chief Research Scientist. Prof. Pulinets is internationally recognized for his pioneering studies on ionization processes and their effects on the atmosphere, leading to the development of a comprehensive Lithosphere–Atmosphere–Ionosphere coupling model, widely used today for short-term earthquake precursor monitoring. He has led and participated in numerous space experiments aboard Soviet and Russian satellites and currently serves as the chief designer of the LAERT ionosonde-radar, part of the “Ionosonde-2025” satellite constellation under the Russian Federal Space Program. He has authored over 192 scientific publications, which have garnered 6,824 citations across 2,736 documents, with an h-index of 38 (Scopus). His work integrates multidisciplinary approaches to earthquake forecasting, as reflected in his monographs with Springer, AGU/Wiley, and IOP Publishing. Prof. Pulinets is a member of COSPAR, URSI, EMSEV, and the International Academy of Astronautics (IAA) and serves as an editor for MDPI Atmosphere and the RAS journal Geomagnetism and Aeronomy. He has reviewed for more than 30 international journals including JGR, Radio Science, and Natural Hazards. His scientific achievements have been recognized with VDNKh Bronze and Silver Medals, the Korolev Medal, and numerous honors from the Russian Federation of Cosmonautics. Holding 10 patents and one scientific discovery, Prof. Pulinets stands among the top 25 most-cited Russian scientists in geophysics.

Profiles: Scopus | Google Scholar | Orcid | Research Gate

Featured Publications 

Ouzounov, D., Inan, S., Kalenda, P., Neumann, L., Pulinets, S., Liu, J.-Y., Shen, X., Yan, R., Rušajová, J., Kafatos, M. C., et al. (2025, January 20). Multi-parameter study of the pre-earthquake phase associated with the Kahramanmaraş sequence in Türkiye on February 6th, 2023. EGUsphere Preprint. https://doi.org/10.5194/egusphere-egu24-6407

Smirnov, S., Pulinets, S., & Bychkov, V. (2024, December 9). Some effects of the Shiveluch Volcano eruption of 10 April 2023 on atmospheric electricity and the ionosphere. Atmosphere, 15(12), 1467. https://doi.org/10.3390/atmos15121467

Pulinets, S., & Velasco Herrera, V. M. (2024, August 5). Earthquake precursors: The physics, identification, and application. Geosciences, 14(8), 209. https://doi.org/10.3390/geosciences14080209

Pulinets, S., Mironova, I., Miklyaev, P., Petrova, T., Shitov, A., & Karagodin, A. (2024, January 27). Radon variability as a result of interaction with the environment. Atmosphere, 15(2), 167. https://doi.org/10.3390/atmos15020167

Pulinets, S. A. (2024, January 22). Physical bases of the short-term forecast of earthquakes. Astronomical and Astrophysical Transactions, 1476-3540. https://doi.org/10.17184/eac.8366

Liu, J.-Y. T., Shen, X., Chang, F.-Y., Chen, Y.-I., Sun, Y.-Y., Chen, C.-H., Pulinets, S., Hattori, K., Ouzounov, D., Tramutoli, V., et al. (2024, January 20). Spatial analyses on pre-earthquake ionospheric anomalies and magnetic storms observed by China seismo-electromagnetic satellite in August 2018. Geoscience Letters, 11(1), 20. https://doi.org/10.1186/s40562-024-00320-2

Grimalsky, V., Kotsarenko, A., Yutsis, V., Pulinets, S., & Del Razo Gonzalez, A. (2023, December 29). New insights into the simulations of electric currents for discharges and ULF magnetic-field perturbations: Applications to the Popocatepetl Volcano and a micro-discharge model. Remote Sensing, 16(1), 151. https://doi.org/10.3390/rs16010151

Shitov, A. V., Pulinets, S. A., & Budnikov, P. A. (2023, August). Effect of earthquake preparation on changes in meteorological characteristics (based on the example of the 2003 Chuya earthquake). Geomagnetism and Aeronomy, 63(6), 745–755. https://doi.org/10.1134/s0016793223600285

Jyoti Srivastava | Research Excellence | Best Researcher Award

Dr. Jyoti Srivastava | Research Excellence | Best Researcher Award

Dr. Jyoti Srivastava | Moffitt Cancer Center | United States

Dr. Jyoti Srivastava, Senior Research Scientist in the Department of Tumor Microenvironment and Metastasis at Moffitt Cancer Center, is an accomplished molecular biologist with over 18 years of pioneering experience spanning cancer biology, immuno-oncology, and therapeutic discovery. Her multidisciplinary research integrates molecular genetics, pharmacology, redox biology, and genomics to uncover mechanisms driving tumor progression, metastasis, and drug resistance. At Moffitt, Dr. Srivastava has made groundbreaking discoveries in melanoma, elucidating how redox and nitrosylation signaling pathways modulate immune evasion and therapeutic resistance in NRAS-driven cancers. Her work has identified actionable targets and led to the development of innovative RNAi-, PROTAC-, and small-molecule–based therapeutics that have advanced toward preclinical and clinical evaluation. Previously at Arrowhead Pharmaceuticals and Yale University, she spearheaded translational research programs that delivered clinical candidates for lung diseases and cancer, while uncovering novel oncogenic pathways such as AEG-1/MTDH in hepatocellular carcinoma and non-alcoholic steatohepatitis (NASH). Dr. Srivastava’s contributions—reflected in over 30 peer-reviewed publications, invited talks at major international conferences, and successful therapeutic innovations—underscore her leadership in bridging fundamental discoveries with clinical application, advancing next-generation strategies to combat cancer and chronic diseases.

Profiles: Google Scholar

Featured Publications 

Yoo, B. K., Santhekadur, P. K., Gredler, R., Chen, D., Emdad, L., Bhutia, S., … & Fisher, P. B. (2011). Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology, 53(5), 1538–1548. https://doi.org/10.1002/hep.24221

Santhekadur, P. K., Das, S. K., Gredler, R., Chen, D., Srivastava, J., Robertson, C., … & Fisher, P. B. (2012). Multifunction protein staphylococcal nuclease domain containing 1 (SND1) promotes tumor angiogenesis in human hepatocellular carcinoma through a novel pathway involving NF-κB and miR-221. Journal of Biological Chemistry, 287(17), 13952–13958. https://doi.org/10.1074/jbc.M111.323899

Sarkar, D., & Fisher, P. B. (2013). AEG-1/MTDH/Lyric: Clinical significance. Advances in Cancer Research, 120, 39–74. https://doi.org/10.1016/B978-0-12-401676-7.00002-0

Srivastava, J., Siddiq, A., Emdad, L., Santhekadur, P. K., Chen, D., Gredler, R., … & Fisher, P. B. (2012). Astrocyte elevated gene-1 promotes hepatocarcinogenesis: Novel insights from a mouse model. Hepatology, 56(5), 1782–1791. https://doi.org/10.1002/hep.25841

Santhekadur, P. K., Akiel, M., Emdad, L., Gredler, R., Srivastava, J., … & Fisher, P. B. (2014). Staphylococcal nuclease domain containing-1 (SND1) promotes migration and invasion via angiotensin II type 1 receptor (AT1R) and TGF-β signaling. FEBS Open Bio, 4, 353–361. https://doi.org/10.1016/j.fob.2014.03.001

Alexander Migdal | Scientific Breakthroughs | Best Researcher Award

Prof. Alexander Migdal | Scientific Breakthroughs | Best Researcher Award 

Prof. Alexander Migdal | Institute for Advanced Study | United States

Alexander A. Migdal is a renowned theoretical physicist with a lifetime of pioneering contributions to mathematical and theoretical physics. Currently a Member of the School of Mathematics at the Institute for Advanced Study, Princeton, he has advanced key areas of physics including quantum field theory, gauge theory, turbulence, and quantum gravity. Educated at the Landau Institute for Theoretical Physics, Migdal has held leading academic positions at prestigious institutions such as Princeton University and New York University. His groundbreaking work includes the Migdal–Kadanoff recursion equations, the Makeenko–Migdal loop equations in large-N QCD, the matrix model solution of two-dimensional quantum gravity, and recent advances in the exact solution of turbulence. Internationally recognized for his achievements, he has received distinguished honors such as the Landau–Weizmann Award and has delivered invited lectures across the globe, continuing to shape modern physics and inspire new generations of researchers.

Profile: OrcidGoogle Scholar

Featured Publications

Migdal, A. (2025). Spontaneous quantization of the Yang–Mills gradient flow. Nuclear Physics B. Advance online publication.

Migdal, A. (2025). Duality of Navier–Stokes to a one-dimensional system. International Journal of Modern Physics A. Advance online publication.

Migdal, A. (2024, December 23). Fluid dynamics duality and solution of decaying turbulence. Preprints.

Migdal, A. (2024, November 12). Duality of the Navier–Stokes dynamics and lack of finite-time explosion (Version 2). Preprints.

Migdal, A. (2024, November 5). Duality of the Navier–Stokes dynamics and lack of finite-time explosion (Version 1). Preprints.

Migdal, A. (2024). Quantum solution of classical turbulence: Decaying energy spectrum. Physics of Fluids, 36(9), 095117.

Migdal, A. (2024, August 4). Quantum solution of classical turbulence: Decaying energy spectrum (Version 3). Qeios.

Migdal, A. (2024, July 9). Quantum solution of classical turbulence: Decaying energy spectrum (Version 14). Preprints.

Migdal, A. (2024, July 9). Quantum solution of classical turbulence: Decaying energy spectrum (Version 2). Qeios.

Migdal, A. (2024, July 3). Quantum solution of classical turbulence: Decaying energy spectrum. Qeios.

Migdal, A. (2024, June 3). Quantum solution of classical turbulence: Decaying energy spectrum (Version 12). Preprints.

Migdal, A. (2024, May 6). Quantum solution of classical turbulence: Decaying energy spectrum (Version 11). Preprints.